Hot-Cracking Mechanism of Laser Welding of Aluminum Alloy 6061 in Lap Joint Configuration.
Km RakhiSeunggu KangJoong-Han ShinPublished in: Materials (Basel, Switzerland) (2023)
Laser welding, known for its distinctive advantages, has become significantly valuable in the automotive industry. However, in this context, the frequent occurrence of hot cracking necessitates further investigation into this phenomenon. This research aims to understand the hot-cracking mechanism in aluminum alloy (AA) 6061, welded using a laser beam in a lap joint setup. We used an array of material characterization methods to study the effects of processing parameters on the cracking susceptibility and to elucidate the hot-cracking mechanism. A laser power of 2000 W generated large hot cracks crossing the whole weld zone for all welding speed conditions. Our findings suggest that using a heat input of 30 J/mm significantly mitigates the likelihood of hot cracking. Furthermore, we observed that the concentrations of the alloying elements in the cracked region markedly surpassed the tolerable limits of some elements (silicon: 2.3 times, chromium: 8.1 times, and iron: 2.7 times, on average) in AA6061. The hot-cracking mechanism shows that the crack initiates from the weld root at the interface between the two welded plates and then extends along the columnar dendrite growth direction. Once the crack reaches the central region of the fusion zone, it veers upward, following the cooling direction in this area. Our comprehensive investigation indicates that the onset and propagation of hot cracks are influenced by a combination of factors, such as stress, strain, and the concentration of alloying elements within the intergranular region.