Login / Signup

Polyphenol extract from superheated steam processed tea waste attenuates the oxidative damage in vivo and in vitro.

Tingfang GaoYuhong ShiYing XueFen YanDa HuangYuanzi WuZuquan Weng
Published in: Journal of food biochemistry (2019)
In this study, tea polyphenols (TPs) was first extracted from tea waste by superheated steam (SS) pretreated ultrasonic-assisted hydrothermal extraction (UAH). The optimized strategy presented extracts with the extraction yield up to 21.19% with a significantly higher antioxidant ability, compared with the one without SS pretreatment. Further investigation proved that the SS suppressed the polyphenol oxidase activity of the TPs extract. The ability to scavenge the free radicals were compared in mouse liver mitochondria. Mitochondrial swelling, mitochondrial membrane potential (MMP), cardiolipin peroxidation, and respiratory chain complex (RCC) I-V activities were also evaluated as the index of the mitochondrial oxidative damage. The study supports evidence that the TPs extract exhibited significant protection against oxidative damage on mitochondrial. Furthermore, the effect of TPs on antioxidant ability in zebrafish embryo was evaluated. After TPs pretreatment for 1 day, zebrafish embryos showed a significantly higher survival rate as well as heart rate when facing the oxidative stress. PRACTICAL APPLICATIONS: Polyphenols from tea leaves have been viewed as an antioxidant additive in food, mainly due to the ability of scavenging free radicals and reactive oxygen species. The results of this study suggest that the SS pretreatment could be used as an efficient method to extract TPs from the tea waste for the prevention of oxidative damage in the mouse liver mitochondria and zebrafish embryos.
Keyphrases