Login / Signup

Hydrogen-Bond-Mediated Formation of C-N or C=N Bond during Photocatalytic Reductive Coupling Reaction over CdS Nanosheets.

Jie HeBo HanChensheng XianZhao HuTingfeng FangZehui Zhang
Published in: Angewandte Chemie (International ed. in English) (2024)
Reductive amination of carbonyl compounds and nitro compounds represents a straightforward way to attain imines or secondary amines, but it is difficult to control the product selectivity. Herein, we report the selective formation of C-N or C=N bond readily manipulated through a solvent-induced hydrogen bond bridge, facilitating the swift photocatalytic reductive coupling process. The reductive-coupling of nitro compounds with carbonyl compounds using formic acid and sodium formate as the hydrogen donors over CdS nanosheets selectively generates imines with C=N bonds in acetonitrile solvent; while taking methanol as solvent, the C=N bonds are readily hydrogenated to the C-N bonds via hydrogen-bonding activation. Experimental and theoretical study reveals that the building of the hydrogen-bond bridge between the hydroxyl groups in methanol and the N atoms of the C=N motifs in imines facilitates the transfer of hydrogen atoms from CdS surface to the N atoms in imines upon illumination, resulting in the rapid hydrogenation of the C=N bonds to give rise to the secondary amines with C-N bonds. Our method provides a simple way to control product selectivity by altering the solvents in photocatalytic organic transformations.
Keyphrases
  • visible light
  • transition metal
  • electron transfer
  • ionic liquid
  • room temperature
  • quantum dots
  • reduced graphene oxide
  • carbon dioxide
  • solar cells
  • kidney transplantation
  • water soluble