Brightness Analysis per Moving Particle: In Situ Analysis of Alkaline Phosphatase in Living Cells.
Luoyu DingTian ZhangChaoqing DongJicun RenPublished in: Analytical chemistry (2022)
In situ quantitative analysis of enzymes such as phosphatase is important to understand a number of involved biological processes ranging from various metabolisms to signal transduction and cellular regulation. In this paper, a novel in situ measurement strategy was proposed to detect alkaline phosphatase (ALP) activity in different locations within single living cells. The principle is based on the measurement of the resonance light scattering brightness ratio (SBR) per moving nanoparticle that forms in an ALP-related chemical reaction. In the method, a novel resonance light scattering correlation spectroscopy (RLSCS) system was developed using two lasers for illumination or two detection channels. Using the gold nanoparticles (AuNPs) as probes, the Au@Ag nanoparticles (Au@Ag NPs) formed due to the ALP-catalyzed hydrolysis of ascorbic acid 2-phosphate (AAP) and the subsequent reduction-deposition reaction of Ag ions that occurred on the AuNPs. The SBR value per moving particle was determined based on the obtained RLS intensity traces and RLSCS curves. The SBR value was found to be not influenced by the intracellular viscosity and size that was confirmed in the experiments. The linear relation between the SBR and ALP activity was established and applied to detect ALP activity and evaluate the inhibition of different drugs. Finally, the method was successfully used to in situ measure ALP activity within living cells. The method overcomes the shortcoming of conventional methods that lack quantitative analysis and are susceptible to intracellular viscosity.