Login / Signup

Population density and vegetation resources influence demography in a hibernating herbivorous mammal.

Anouch TamianVincent A ViblancF Stephen DobsonClaire Saraux
Published in: Oecologia (2024)
Demography of herbivorous mammal populations may be affected by changes in predation, population density, harvesting, and climate. Whereas numerous studies have focused on the effect of single environmental variables on individual demographic processes, attempts to integrate the consequences of several environmental variables on numerous functional traits and demographic rates are rare. Over a 32-year period, we examined how forage availability (vegetation assessed through NDVI) and population density affected the functional traits and demographic rates of a population of Columbian ground squirrels (Urocitellus columbianus), a herbivorous hibernating rodent. We focused on mean population phenology, body mass, breeding success, and survival. We found a negative effect of population density on demographic rates, including on breeding success and pup and adult survival to the next year. We found diverging effects of vegetation phenology on demographic rates: positive effects of a later start of the growing season on adult and yearling female survival, and juvenile survival, but no clear effect on male survival. Interestingly, neither population density nor vegetation affected population phenology or body condition in the following year. Vegetative growth rate had a positive influence on female mass gain (somatic investment) over a season, but both vegetative growth rate and biomass, surprisingly, had negative effects on the survival of young through their first hibernation. Thus, ground squirrels appeared to benefit more from later timing of vegetation than increases in vegetative biomass per se. Our study provides evidence for complex ecological effects of vegetation and population density on functional traits and demographic rates of small mammal populations.
Keyphrases
  • climate change
  • gene expression
  • genome wide
  • wastewater treatment