Login / Signup

The Enhancement Mechanism of Different Single-Transition Metal Atomic Catalysts/Sulfur Cathode on High-Performance of Li-S Batteries.

Chao WuJinggao WuJuan LiZhuo ZouHong Bin YangXiaoshuai WuQingxin ZengFangyin DaiWei SunChang Ming Li
Published in: Small (Weinheim an der Bergstrasse, Germany) (2023)
Materials with various single-transition metal atoms dispersed in nitrogenated carbons (M─N─C, M = Fe, Co, and Ni) are synthesized as cathodes to investigate the electrocatalytic behaviors focusing on their enhancement mechanism for performance of Li-S batteries. Results indicate that the order of both electrocatalytic activity and rate capacity for the M─N─C catalysts is Co > Ni > Fe, and the Co─N─C delivers the highest capacity of 1100 mAh g -1 at 1 C and longtime stability at a decay rate of 0.05% per cycle for 1000 cycles, demonstrating excellent battery performance. Theoretical calculations for the first time reveal that M─N─N─C catalysts enable direct conversion of Li 2 S 6 to Li 2 S rather than Li 2 S 4 to Li 2 S by stronger adsorption with Li 2 S 6 , which also has an order of Co > Ni > Fe. And Co─N─C has the strongest adsorption energy, not only rendering the highest electrocatalytic activity, but also depressing the polysulfides' dissolution into electrolyte for the longest cycle life. This work offers an avenue to design the next generation of highly efficient sulfur cathodes for high-performance Li-S batteries, while shedding light on the fundamental insight of single metal atomic catalytic effects on Li-S batteries.
Keyphrases