Login / Signup

Redistribution of valence and conduction band states depending on the method of modification of SiO2 structure.

A S KonashukElena O Filatova
Published in: Physical chemistry chemical physics : PCCP (2018)
The effect of introducing porosity and the insertion of methyl groups in SiO4 tetrahedra on the distribution of valence and conduction band states of SiO2 was studied using high-resolution near edge X-ray absorption fine structure spectroscopy (NEXAFS) and soft X-ray photoelectron spectroscopy (XPS). Alignment of NEXAFS spectra and valence band XPS spectra in a common energy scale was performed using binding energies of the initial levels obtained by XPS. It was established that the insertion of methyl groups into SiO4 tetrahedra leads to a significant shift of the top of the valence band EV to smaller binding energies due to the reduction of the electronegativity of the nearest surrounding neighbors of the Si atoms, while introducing porosity changes the position of EV only slightly. The position of the bottom of the conduction band is affected by neither the introduction of porosity nor the insertion of methyl groups. The formation of the π*C[double bond, length as m-dash]C state near the Fermi level, caused by the presence of porogen residues in the structure of organosilicate glass (OSG) and responsible for the leakage currents, was revealed. It was found that high level porosity in OSG films induces a significant variation of Si-O-Si valence angles. A number of Si-O dangling bonds were found in the surface layers of por-SiO2, while methyl groups effectively passivated these dangling bonds in OSG films. The obtained results are important for understanding the regularities of electronic structure formation in SiO2-based low-k dielectrics, which is necessary for the reduction of energy dissipated in semiconductor integrated circuits (ICs).
Keyphrases
  • high resolution
  • room temperature
  • magnetic nanoparticles
  • density functional theory
  • single molecule
  • mass spectrometry
  • air pollution
  • solid state
  • computed tomography
  • dual energy
  • single cell
  • high speed