Login / Signup

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir.

Mathias FranzRomy JunghansPaul SchmittAdriana SzeghalmiStefan E Schulz
Published in: Beilstein journal of nanotechnology (2020)
The wafer-level integration of high aspect ratio silicon nanostructures is an essential part of the fabrication of nanodevices. Metal-assisted chemical etching (MACE) is a promising low-cost and high-volume technique for the generation of vertically aligned silicon nanowires. Noble metal nanoparticles were used to locally etch the silicon substrate. This work demonstrates a bottom-up self-assembly approach for noble metal nanoparticle formation and the subsequent silicon wet etching. The macroscopic wafer patterning has been done by using a poly(methyl methacrylate) masking layer. Different metals (Au, Pt, Pd, Cu, and Ir) were investigated to derive a set of technologies as platform for specific applications. Especially, the shape of the 3D structures and the resulting reflectance have been investigated. The Si nanostructures fabricated using Au nanoparticles show a perfect light absorption with a reflectance below 0.3%. The demonstrated technology can be integrated into common fabrication processes for microelectromechanical systems.
Keyphrases
  • low cost
  • reduced graphene oxide
  • sensitive detection
  • high resolution
  • risk assessment
  • health risk
  • heavy metals
  • gold nanoparticles
  • visible light
  • tissue engineering
  • human health
  • drinking water
  • cell fate