Login / Signup

Contribution of Resting Conductance, GABAA-Receptor Mediated Miniature Synaptic Currents and Neurosteroid to Chloride Homeostasis in Central Neurons.

Tushar D YelhekarMichael DruzinStaffan Johansson
Published in: eNeuro (2017)
Maintenance of a low intraneuronal Cl- concentration, [Cl-]i, is critical for inhibition in the CNS. Here, the contribution of passive, conductive Cl- flux to recovery of [Cl-]i after a high load was analyzed in mature central neurons from rat. A novel method for quantifying the resting Cl- conductance, important for [Cl-]i recovery, was developed and the possible contribution of GABAA and glycine receptors and of ClC-2 channels to this conductance was analyzed. The hypothesis that spontaneous, action potential-independent release of GABA is important for [Cl-]i recovery was tested. [Cl-]i was examined by gramicidin-perforated patch recordings in medial preoptic neurons. Cells were loaded with Cl- by combining GABA or glycine application with a depolarized voltage, and the time course of [Cl-]i was followed by measurements of the Cl- equilibrium potential, as obtained from the current recorded during voltage ramps combined with GABA or glycine application. The results show that passive Cl- flux contributes significantly, in the same order of magnitude as does K+-Cl- cotransporter 2 (KCC2), to [Cl-]i recovery and that Cl- conductance accounts for ∼ 6% of the total resting conductance. A major fraction of this resting Cl- conductance is picrotoxin (PTX)-sensitive and likely due to open GABAA receptors, but ClC-2 channels do not contribute. The results also show that when the decay of GABAA receptor-mediated miniature postsynaptic currents (minis) is slowed by the neurosteroid allopregnanolone, such minis may significantly quicken [Cl-]i recovery, suggesting a possible steroid-regulated role for minis in the control of Cl- homeostasis.
Keyphrases
  • heart rate
  • spinal cord
  • heart rate variability
  • blood pressure
  • oxidative stress
  • induced apoptosis
  • spinal cord injury
  • cell death
  • signaling pathway