Login / Signup

Fully (Re)configurable Interactive Material through a Switchable Photothermal Charge Transfer Complex Gated by a Supramolecular Liquid Crystal Elastomer Actuator.

Shuang TianSean J D LuggerChun-Sing LeeMichael G DebijeAlbertus P H J Schenning
Published in: Journal of the American Chemical Society (2023)
Charge transfer complexes (CTCs) based on self-assembled donor and acceptor molecules allow light absorption of significantly redshifted wavelengths to either the donor or acceptor. In this work, we demonstrate a CTC embedded in a hydrogen-bonded liquid crystal elastomer (LCE), which in itself is fully reformable and reprocessable. The LCE host acts as a gate, directing the self-assembly of the CTC. When hydrogen bonding is present, the CTC behaves as a near-infrared (NIR) dye allowing photothermal actuation of the LCE. The CTC can be disassembled in specific regions of the LCE film by disrupting the hydrogen bond interactions, allowing selective NIR heating and localized actuation of the films. The metastable non-CTC state may persist for weeks or can be recovered on demand by heat treatment. Besides the CTC variability, the capability of completely reforming the shape, color, and actuation mode of the LCE provides an interactive material with unprecedented application versatility.
Keyphrases
  • circulating tumor cells
  • circulating tumor
  • photodynamic therapy
  • drug release
  • drug delivery
  • cancer therapy
  • room temperature
  • heat stress
  • highly efficient