Staphylococcus aureus is a major threat in infectious diseases due to its varied infection types and increased resistance. S. aureus could form persister cells under certain condition and could also attach on medical apparatus to form biofilms, which exhibited extremely high resistance to antibiotics. 3-Acetyl-11-keto-beta-boswellic acid (AKBA) is a well-studied anti-tumor and antioxidant drug. This study is aimed to determine the antimicrobial effects of AKBA against S. aureus and its persister cells and biofilms. The in vitro antimicrobial susceptibility of AKBA was assessed by micro-dilution assay, disc diffusion assay and time-killing assay. Drug combination between AKBA and conventional antibiotics was detected by checkerboard assay. And the antibiofilm effects of AKBA against S. aureus were explored by crystal violet staining combined with SYTO/PI probes staining. Next, RBC lysis activity and CCK-8 kit were used to determine the cytotoxicity of AKBA. In addition, murine subcutaneous abscess model was used to assess the antimicrobial effects of AKBA in vivo. Our results revealed that AKBA was found to show effective antimicrobial activity against methicillin-resistant S. aureus (MRSA) with the minimal inhibitory concentration of 4-8 µg/mL with undetectable cytotoxicity. And no resistant mutation was induced by AKBA after 20 days of consecutive passage. Further, we found that AKBA could be synergy with gentamycin or amikacin against S. aureus and its clinical isolates. By crystal violet and SYTO9/PI staining, AKBA exhibited strong biofilm inhibitory and eradication effects at the concentration of 1 ~ 4 µg/mL. In addition, the effective antimicrobial effect was verified in vivo in a mouse model. And no detectable in vivo toxicity was found. These results indicated that AKBA has great potential to development as an alternative treatment for the refractory S. aureus infections.
Keyphrases
- staphylococcus aureus
- methicillin resistant staphylococcus aureus
- induced apoptosis
- high throughput
- biofilm formation
- mouse model
- oxidative stress
- infectious diseases
- escherichia coli
- emergency department
- drug induced
- helicobacter pylori infection
- liquid chromatography tandem mass spectrometry
- mass spectrometry
- signaling pathway
- single cell
- simultaneous determination
- ms ms
- tandem mass spectrometry