Multicolored inorganic electrochromic materials: status, challenge, and prospects.
Chengyu JiangRui GeChenchen BianLirong ChenXingru WangYang ZhengGang XuGuofa CaiXiudi XiaoPublished in: Nanoscale (2023)
Against the backdrop of advocacy for green and low-carbon development, electrochromism has attracted academic and industrial attention as an intelligent and energy-saving applied technology due to its optical switching behavior and its special principles of operation. Inorganic electrochromic materials, represented by transition metal oxides, are considered candidates for the next generation of large-scale electrochromic applied technologies due to their excellent stability. However, the limited color diversity and low color purity of these materials greatly restrict their development. Starting from the multicolor properties of inorganic electrochromic materials, this review systematically elaborates on recent progress in the aspects of the intrinsic multicolor of electrochromic materials, and structural multicolor based on the interaction between light and microstructure. Finally, the challenges and opportunities of inorganic electrochromic technology in the field of multicolor are discussed.