Login / Signup

Study on Viscoelastic Properties of Asphalt Mixtures Incorporating SBS Polymer and Basalt Fiber under Freeze-Thaw Cycles.

Wensheng WangGuojin TanChunyu LiangYong WangYongchun Cheng
Published in: Polymers (2020)
This study aims to study the viscoelastic properties of asphalt mixtures incorporating styrene-butadiene-styrene (SBS) polymer and basalt fiber under freeze-thaw (F-T) cycles by using the static creep test. Asphalt mixture samples incorporating styrene-butadiene-styrene (SBS) polymer and basalt fiber were manufactured following the Superpave gyratory compaction (SGC) method and coring as well as sawing. After 0 to 21 F-T cycles processing, a uniaxial compression static creep test for the asphalt mixture specimens was performed to evaluate the influence of F-T cycles. The results indicated that the F-T cycles caused a larger creep deformation in the asphalt mixtures, which led to a decrease in the rut resistance of the asphalt mixtures incorporating SBS polymer and basalt fiber. Besides, the resistance to deformation decreased significantly in the early stage of F-T cycles. On the other hand, the viscoelastic parameters were analyzed to discuss the variation of viscoelastic characteristics. The relaxation time increased with F-T cycles, which will not be conducive to internal stress dissipation. Compared with lignin fiber, basalt fiber can improve the resistance to high-temperature deformation and the low-temperature crack resistance of asphalt mixtures under F-T cycles.
Keyphrases
  • ionic liquid
  • early stage
  • atomic force microscopy
  • high resolution