Login / Signup

Relative contributions of PGR5- and NDH-dependent photosystem I cyclic electron flow in the generation of a proton gradient in Arabidopsis chloroplasts.

Rinya KawashimaRyoichi SatoKyohei HaradaShinji Masuda
Published in: Planta (2017)
Respective contributions of PGR5- and NDH-dependent cyclic electron flows around photosystem I for generating the proton gradient across the thylakoid membrane are ~30 and ~5%. The proton concentration gradient across the thylakoid membrane (ΔpH) produced by photosynthetic electron transport is the driving force of ATP synthesis and non-photochemical quenching. Two types of electron transfer contribute to ΔpH formation: linear electron flow (LEF) and cyclic electron flow (CEF, divided into PGR5- and NDH-dependent pathways). However, the respective contributions of LEF and CEF to ΔpH formation are largely unknown. We employed fluorescence quenching analysis with the pH indicator 9-aminoacridine to directly monitor ΔpH formation in isolated chloroplasts of Arabidopsis mutants lacking PGR5- and/or NDH-dependent CEF. The results indicate that ΔpH formation is mostly due to LEF, with the contributions of PGR5- and NDH-dependent CEF estimated as only ~30 and ~5%, respectively.
Keyphrases
  • electron transfer
  • energy transfer
  • solar cells
  • cell wall