Login / Signup

Data-Driven Analysis of Hole-Transporting Materials for Perovskite Solar Cells Performance.

Marcos Del CuetoCharles Rawski-FurmanJuan AragóEnrique OrtíAlessandro Troisi
Published in: The journal of physical chemistry. C, Nanomaterials and interfaces (2022)
We have created a dataset of 269 perovskite solar cells, containing information about their perovskite family, cell architecture, and multiple hole-transporting materials features, including fingerprints, additives, and structural and electronic features. We propose a predictive machine learning model that is trained on these data and can be used to screen possible candidate hole-transporting materials. Our approach allows us to predict the performance of perovskite solar cells with reasonable accuracy and is able to successfully identify most of the top-performing and lowest-performing hole-transporting materials in the dataset. We discuss the effect of data biases on the distribution of perovskite families/architectures on the model's accuracy and offer an analysis with a subset of the data to accurately study the effect of the hole-transporting material on the solar cell performance. Finally, we discuss some chemical fragments, like arylamine and aryloxy groups, which present a relatively large positive correlation with the efficiency of the cell, whereas other groups, like thiophene groups, display a negative correlation with power conversion efficiency (PCE).
Keyphrases