Login / Signup

Design, Synthesis, and Anti-ToCV Activity of Novel 4(3H)-Quinazolinone Derivatives Bearing Dithioacetal Moiety.

Guangcheng ZuXiuhai GanDandan XieHuanyu YangAwei ZhangShaoyuan LiDeyu HuBao-An Song
Published in: Journal of agricultural and food chemistry (2020)
Tomato chlorosis virus (ToCV) has caused great harm to the production of tomato worldwide. To develop efficient anti-ToCV agents, some novel 4(3H)-quinazolinone derivatives containing dithioacetal were designed and synthesized, and their anti-ToCV activities were evaluated by microscale thermophoresis (MST) using ToCV coat protein (ToCV-CP) as a new target. The results showed that some compounds had a strong binding capacity to ToCV-CP. In particular, compounds C5 and C22 have an excellent binding capacity to ToCV-CP, with binding constant values of 0.24 and 0.25 μM, respectively. Additionally, reduced ToCV-CP gene expression levels of 81.05 and 87.59% could be achieved when tomato was treated with compounds C5 and C22, respectively, which were obviously higher than the levels after ningnanmycin (NNM) treatment (43.88%) and lead compound Xiangcaoliusuobingmi (XCLSBM) treatment (63.56%). Therefore, this work indicates that 4(3H)-quinazolinone derivatives containing dithioacetal moiety can be used as novel anti-ToCV agents.
Keyphrases
  • gene expression
  • binding protein
  • dna binding