Login / Signup

Solvent Effects in Ligand Stripping Behavior of Colloidal Nanoparticles.

Akhlak U MahmoodMehedi H RizviJoseph B TracyYaroslava G Yingling
Published in: ACS nano (2023)
Inorganic colloidal nanoparticle (NP) properties can be tuned by stripping stabilizing ligands using a poor solvent. However, the mechanism behind ligand stripping is poorly understood, in part because in situ measurements of ligand stripping are challenging at the nanoscale. Here, we investigate ethanol solvent-mediated oleylamine ligand stripping from magnetite (Fe 3 O 4 ) NPs in different compositions of ethanol/hexane mixtures using atomistic molecular dynamics (MD) simulations and thermogravimetric analysis (TGA). Our study elucidates a complex interplay of ethanol interactions with system components and indicates the existence of a threshold concentration of ∼34 vol % ethanol, above which ligand stripping saturates. Moreover, hydrogen bonding between ethanol and stripped ligands inhibits subsequent readsorption of the ligands on the NP surface. A proposed modification of the Langmuir isotherm explains the role of the enthalpy of mixing of the ligands and solvents on the ligand stripping mechanism. A good agreement between the MD predictions and TGA measurements of ligand stripping from Fe 3 O 4 NPs validates the simulation observations. Our findings demonstrate that the ligand coverage of NPs can be controlled by using a poor solvent below the threshold concentration and highlight the importance of ligand-solvent interactions that modulate the properties of colloidal NPs. The study also provides an approach for a detailed in silico study of ligand stripping and exchange from colloidal NPs that are crucial for applications of NPs spanning self-assembly, optoelectronics, nanomedicine, and catalysis.
Keyphrases
  • molecular dynamics
  • ionic liquid
  • healthcare
  • molecular docking
  • mass spectrometry
  • cancer therapy