Diabetic cardiomyopathy (DCM) is characterized by oxidative damage and inflammatory responses. Myeloid differentiation protein 1 (MD1) exhibits antioxidant and anti-inflammatory properties. However, the specific role of MD1 in DCM has yet to be elucidated. This study aims to investigate the role of MD1 in DCM and to elucidate the underlying mechanisms. We utilized a gain-of-function approach to explore the involvement of MD1 in DCM. Diabetes was induced in MD1-transgenic (MD1-TG) mice and their wild-type (WT) counterparts via streptozotocin (STZ) injection. Additionally, a diabetes cell model was established using H9c2 cells exposed to high glucose levels. We conducted comprehensive evaluations, including pathological analyses, echocardiography, electrocardiography, and molecular assessments, to elucidate the underlying mechanisms of MD1 in DCM. Notably, MD1 expression was reduced in the hearts of STZ-induced diabetic mice. Overexpression of MD1 significantly improved cardiac function and markedly inhibited ventricular pathological hypertrophy and fibrosis in these mice. Furthermore, MD1 overexpression resulted in a substantial decrease in myocardial reactive oxygen species (ROS) accumulation, mitigating myocardial oxidative stress and reducing the levels of inflammation-related markers such as IL-1β, IL-6, and TNF-α. Mechanistically, MD1 overexpression inhibited the activation of the TLR4/STAT3 signaling pathway, as demonstrated in both in vivo and in vitro experiments. The overexpression of MD1 significantly impeded pathological cardiac remodeling and improved cardiac function in STZ-induced diabetic mice. This effect was primarily attributed to a reduction in ROS accumulation and mitigation of myocardial oxidative stress and inflammation, facilitated by the inhibition of the TLR4/STAT3 signaling pathway.
Keyphrases
- diabetic rats
- oxidative stress
- molecular dynamics
- high glucose
- signaling pathway
- cell proliferation
- induced apoptosis
- left ventricular
- type diabetes
- reactive oxygen species
- dna damage
- transcription factor
- cardiovascular disease
- toll like receptor
- anti inflammatory
- heart failure
- immune response
- pi k akt
- ischemia reperfusion injury
- cell death
- epithelial mesenchymal transition
- stem cells
- wild type
- computed tomography
- rheumatoid arthritis
- dendritic cells
- cell therapy
- pulmonary hypertension
- high fat diet induced
- long non coding rna
- nuclear factor
- high fat diet
- weight loss