Login / Signup

4-Bromodiphenyl Ether Causes Adrenal Gland Dysfunction in Rats during Puberty.

Xiuxiu ChenJiaying MoSong ZhangXiaoheng LiTongliang HuangQiqi ZhuSongxue WangXianwu ChenRen-Shan Ge
Published in: Chemical research in toxicology (2019)
Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants with two or more bromines attached. They are endocrine disruptors. PBDEs photodegrade into 4-bromodiphenyl ether (BDE3). Whether BDE3 impairs adrenal cortical cell function during postnatal development still remains unknown. The aim of the current study was to investigate the influence of BDE3 on adrenal cortical cell function. Sprague-Dawley rats (35 days of age, male) were orally administered with BDE3 (0, 50, 100, and 200 mg/kg/day body weight) for 21 days. BDE3 significantly increased serum aldosterone and corticosterone levels at 200 mg/kg without affecting adrenocorticotropic hormone level. Further study showed that BDE3 up-regulated Cyp11b1 at 100 and 200 mg/kg and Scarb1, Star, Cyp11b2, Cyp21, and Nr5a1 mRNA levels in the 200 mg/kg group. BDE3 also decreased the phosphorylation of AMP-activated protein kinase (AMPK) at 200 mg/kg and increased PGC-1α and phosphorylated cyclic AMP-responsive element-binding protein (CREB)/CREB at 200 mg/kg. Taken together, these findings demonstrate that BDE3 stimulates adrenal cell function likely through decreasing phosphorylation of AMPK and increasing phosphorylation of CREB.
Keyphrases
  • protein kinase
  • body weight
  • binding protein
  • skeletal muscle
  • oxidative stress
  • transcription factor
  • ionic liquid