Lung Function and Respiratory Muscle Adaptations of Endurance- and Strength-Trained Males.
Daniel A HackettPublished in: Sports (Basel, Switzerland) (2020)
Diverse exercise-induced adaptations following aerobic endurance compared to strength-training programs is well documented, however, there is paucity of research specifically focused on adaptations in the respiratory system. The aim of the study was to examine whether differences in lung function and respiratory muscle strength exist between trainers predominately engaged in endurance compared to strength-related exercise. A secondary aim was to investigate if lung function and respiratory muscle strength were associated with one-repetition maximum (1RM) in the strength trainers, and with VO2 max and fat-free mass in each respective group. Forty-six males participated in this study, consisting of 24 strength-trained (26.2 ± 6.4 years) and 22 endurance-trained (29.9 ± 7.6 years) participants. Testing involved measures of lung function, respiratory muscle strength, VO2 max, 1RM, and body composition. The endurance-trained compared to strength-trained participants had greater maximal voluntary ventilation (MVV) (11.3%, p = 0.02). The strength-trained compared to endurance-trained participants generated greater maximal inspiratory pressure (MIP) (14.3%, p = 0.02) and maximal expiratory pressure (MEP) (12.4%, p = 0.02). Moderate-strong relationships were found between strength-trained respiratory muscle strength (MIP and MEP) and squat and deadlift 1RM (r = 0.48-0.55, p ≤ 0.017). For the strength-trained participants, a strong relationship was found between MVV and VO2 max (mL·kg-1·min-1) (r = 0.63, p = 0.003) and a moderate relationship between MIP and fat-free mass (r = 0.42, p = 0.04). It appears that endurance compared to strength trainers have greater muscle endurance, while the latter group exhibits greater respiratory muscle strength. Differences in respiratory muscle strength in resistance trainers may be influenced by lower body strength.