Login / Signup

Reconstructing the 3D Coordinates of Guest:Host OLED Blends with Single Atom Resolution.

Lachlan PackmanBronson PhilippaAlmantas PivrikasPaul L BurnIan R Gentle
Published in: Small methods (2024)
The performance of electronic and semiconductor devices is critically dependent on the distribution of guest molecules or atoms in a host matrix. One prominent example is that of organic light-emitting diode (OLED) displays containing phosphorescent emitters, now ubiquitous in handheld devices and high-end televisions. In such OLEDs the phosphorescent guest [normally an iridium(III)-based complex] is typically blended into a host matrix, and charge injection and transport, exciton formation and decay, and hence overall device performance are governed by the distribution of the emissive guest in the host. Here high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) is used with depth sectioning to reconstruct the 3D distribution of emissive iridium(III) complexes, fac-tris(2-phenylpyridine)iridium(III) [Ir(ppy) 3 ], blended into the amorphous host material, tris(4-carbazoyl-9-ylphenyl)amine (TCTA), by resolving the position of each single iridium(III) ion. It is found that most Ir(ppy) 3 complexes are clustered with at least one other, even at low concentrations, and that for films of 20 wt.% Ir(ppy) 3 essentially all the complexes are interconnected. The results validate the morphology of blend films created using molecular dynamics simulations which mimic the evaporation film-forming process and are also consistent with the experimentally measured charge transport and photophysical properties.
Keyphrases