Reproductive Outcomes from Maternal Loss of Nlrp2 Are Not Improved by IVF or Embryo Transfer Consistent with Oocyte-Specific Defect.
Sara ArianJessica RubinImen ChakchoukMomal SharifSangeetha K MahadevanHadi ErfaniKatharine ShellyLan LiaoIsabel LorenzoRajesh RamakrishnanIgnatia B Van den VeyverPublished in: Reproductive sciences (Thousand Oaks, Calif.) (2020)
Nlrp2 encodes a protein of the oocyte subcortical maternal complex (SCMC), required for embryo development. We previously showed that loss of maternal Nlrp2 in mice causes subfertility, smaller litters with birth defects, and growth abnormalities in offspring, indicating that Nlrp2 is a maternal effect gene and that all embryos from Nlrp2-deficient females that were cultured in vitro arrested before the blastocysts stage. Here, we used time-lapse microscopy to examine the development of cultured embryos from superovulated Nlrp2-deficient and wild-type mice after in vivo and in vitro fertilization. Embryos from Nlrp2-deficient females had similar abnormal cleavage and fragmentation and arrested by blastocyst stage, irrespective of fertilization mode. This indicates that in vitro fertilization does not further perturb or improve the development of cultured embryos. We also transferred embryos from superovulated Nlrp2-deficient and wild-type females to wild-type recipients to investigate if the abnormal reproductive outcomes of Nlrp2-deficient females are primarily driven by oocyte dysfunction or if a suboptimal intra-uterine milieu is a necessary factor. Pregnancies with transferred embryos from Nlrp2-deficient females produced smaller litters, stillbirths, and offspring with birth defects and growth abnormalities. This indicates that the reproductive phenotype is oocyte-specific and is not rescued by development in a wild-type uterus. We further found abnormal DNA methylation at two maternally imprinted loci in the kidney of surviving young adult offspring, confirming persistent DNA methylation disturbances in surviving offspring. These findings have implications for fertility treatments for women with mutations in NLRP2 and other genes encoding SCMC proteins.
Keyphrases
- wild type
- nlrp inflammasome
- dna methylation
- pregnancy outcomes
- genome wide
- high fat diet
- birth weight
- young adults
- endothelial cells
- pregnant women
- gene expression
- gestational age
- oxidative stress
- white matter
- physical activity
- skeletal muscle
- transcription factor
- mass spectrometry
- high throughput
- protein protein
- dna binding
- kidney transplantation
- preterm birth
- genome wide identification