Login / Signup

Interfacial Separation-Enabled All-Dry Approach for Simultaneous Visualization, Transfer, and Enhanced Raman Analysis of Latent Fingerprints.

Lei ZhaoXiaoqin HuangWeihua Hu
Published in: ACS applied materials & interfaces (2017)
It is of essential importance to visualize latent fingerprint (LFP) and analyze the compounds therein. For this purpose, various approaches have been developed but suffer from low imaging and/or detection efficiency. Most importantly, most of them require a necessary in-solution process and thus are not applicable to LFPs on bulky or water-sensitive substrates. In this work, we report an all-dry method to achieve simultaneous visualization and transfer of LFP and enhanced Raman analysis of multiple species therein. In this innovative approach, polydopamine (PDA) film-coated poly(dimethylsiloxane) (PDMS) flake with dense plasmonic silver nanoparticles (AgNPs@PDA@PDMS) was applied to cover the substrate carrying LFP. After gentle separation, the AgNPs@PDA film was transferred from PDMS to the LFP ridges to visualize a positive LFP pattern on the substrate, leaving behind a complementary (negative) LFP pattern on the PDMS flake. The compounds in the LFP were further analyzed via the AgNP-enhanced Raman technique. This approach enables high-contrast and full-feature visualization and transfer of LFP on arbitrary nonporous substrates and facilitates sensitive Raman analysis of multiple species in the sweat and thus promises great potential for practical applications.
Keyphrases