Relation of Intracerebral Hemorrhage Descriptors with Clinical Factors.
Kornelia M KliśRoger M KrzyżewskiBorys M KwintaKrzysztof StachuraTadeusz J PopielaJerzy GąsowskiJacek DługopolskiPublished in: Brain sciences (2020)
The association between intracerebral hemorrhage (ICH) shape and a poor treatment outcome has been established by few authors. We decided to analyze whether computationally assessed hemorrhage shape irregularity is associated with any known predictors of its poor treatment outcome. We retrospectively analyzed 48 patients with spontaneous intracerebral hemorrhage. For each patient we calculated Fractal Dimension, Compactness, Fourier Factor and Circle Factor. Our study showed that patients above 65 years old had significantly higher Compactness (0.70 ± 0.19 vs. 0.56 ± 0.20; p < 0.01), Fractal Dimension (0.46 ± 0.22 vs. 0.32 ± 0.20; p = 0.03) and Circle Factor (0.51 ± 0.25 vs. 0.35 ± 0.17; p < 0.01). Patients with hemorrhage growth had significantly higher Compactness (0.74 ± 0.23 vs. 0.58 ± 0.18; p < 0.01), Circle Factor (0.55 ± 0.27 vs. 0.37 ± 0.18; p < 0.01) and Fourier Factor (0.96 ± 0.06 vs. 0.84 ± 0.19; p = 0.03). In conclusion, irregularity resulting from the number of appendices can be a predictor of ICH growth; however, the size of those appendices is also important. Shape roughness better reflects the severity of brain tissue damage and a patient's general condition.