Login / Signup

Energy Efficiency and Reliability Considerations in Wireless Body Area Networks: A Survey.

Farman UllahMuhammad Zahid KhanGulzar MehmoodMuhammad Shuaib QureshiMuhammad Fayaz
Published in: Computational and mathematical methods in medicine (2022)
In this paper, we have reviewed and presented a critical overview of "energy-efficient and reliable routing solutions" in the field of wireless body area networks (WBANs). In addition, we have theoretically analysed the importance of energy efficiency and reliability and how it affects the stability and lifetime of WBANs. WBAN is a type of wireless sensor network (WSN) that is unique, wherever energy-efficient operations are one of the prime challenges, because each sensor node operates on battery, and where an excessive amount of communication consumes more energy than perceiving. Moreover, timely and reliable data delivery is essential in all WBAN applications. Moreover, the most frequent types of energy-efficient routing protocols include crosslayer, thermal-aware, cluster-based, quality-of-service, and postural movement-based routing protocols. According to the literature review, clustering-based routing algorithms are the best choice for WBAhinwidth, and low memory WBAN, in terms of more computational overhead and complexity. Thus, the routing techniques used in WBAN should be capable of energy-efficient communication at desired reliability to ensure the improved stability period and network lifetime. Therefore, we have highlighted and critically analysed various performance issues of the existing "energy-efficient and reliable routing solutions" for WBANs. Furthermore, we identified and compiled a tabular representation of the reviewed solutions based on the most appropriate strategy and performance parameters for WBAN. Finally, concerning to reliability and energy efficiency in WBANs, we outlined a number of issues and challenges that needs further consideration while devising new solutions for clustered-based WBANs.
Keyphrases
  • machine learning
  • healthcare
  • mental health
  • lymph node
  • rna seq
  • big data
  • weight gain