DNA-guided lattice remodeling of carbon nanotubes.
Zhiwei LinLeticia C BeltranZeus A De Los SantosYinong LiTehseen AdelJeffrey A FaganAngela R Hight WalkerEdward H EgelmanMing ZhengPublished in: Science (New York, N.Y.) (2022)
Covalent modification of carbon nanotubes is a promising strategy for engineering their electronic structures. However, keeping modification sites in registration with a nanotube lattice is challenging. We report a solution using DNA-directed, guanine (G)-specific cross-linking chemistry. Through DNA screening we identify a sequence, C 3 GC 7 GC 3 , whose reaction with an (8,3) enantiomer yields minimum disorder-induced Raman mode intensities and photoluminescence Stokes shift, suggesting ordered defect array formation. Single-particle cryo-electron microscopy shows that the C 3 GC 7 GC 3 functionalized (8,3) has an ordered helical structure with a 6.5 angstroms periodicity. Reaction mechanism analysis suggests that the helical periodicity arises from an array of G-modified carbon-carbon bonds separated by a fixed distance along an armchair helical line. Our findings may be used to remodel nanotube lattices for novel electronic properties.