Efficient Removal of Nonylphenol Isomers from Water by Use of Organo-Hydrotalcites.
Daniel CosanoDolores EsquivelFrancisco José Romero-SalgueroCésar Jiménez-SanchidriánJosé Rafael RuizPublished in: International journal of environmental research and public health (2022)
The presence of potent organic endocrine-disrupting chemicals (EDCs) in natural aquifers can have adverse impacts on public health and the environment. 4-nonylphenol, one such EDC, can be efficiently removed from water by adsorption onto a clayey material. In this work, we created an effective sorbent for this purpose by using co-precipitation and subsequent ion-exchange to intercalate the organic anion deoxycholate into a Mg/Al hydrotalcite. Intercalating deoxycholate ions increased the organophilicity of the hydrotalcite surface. The solid was used to adsorb 4-nonylphenol at different pollutant concentrations and temperatures. The adsorption process was subjected to a kinetic study. Based on the results, the EDC was adsorbed by chemisorption. In addition, based on the equilibrium isotherms used for the process, the Freundlich model was the most accurate in reproducing the adsorption of 4-nonylphenol onto deoxycholate-intercalated hydrotalcite.