Solid-state ion recognition strategy using 2D hexagonal mesophase silica monolithic platform: a smart two-in-one approach for rapid and selective sensing of Cd2+ and Hg2+ ions.
Aswanidevi KongasseriNaveen Kumar SompalliVarad A ModakAnkita MohantySivaraman NagarajanC V S Brahmananda RaoPrabhakaran DeivasigamaniAkhila Maheswari MohanPublished in: Mikrochimica acta (2020)
The possibility of a multifunctional and reversible solid-state colorimetric sensor is described for the identification and quantification of ultra-trace Cd2+ and Hg2+ ions, using a honeycomb-structured mesoporous silica monolith conjoined with an indigenous chromoionophoric probe, i.e., 4-hexyl-6-((5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl)benzene-1,3-diol (HMTAR). The amphiphilic probe is characterized using NMR, FT-IR, HR-MS, and CHNS elemental analysis. The structural and surface properties of the monolithic template have been characterized using p-XRD, XPS, TEM-SAED, SEM-EDAX, FT-IR, TG-DTA, and N2 isotherm analysis. The unique structural features and distinct analytical properties of the solid-state sensor proffer a strong response in selectively signaling the target analytes. The probe (HMTAR) exhibits a 1:1 stoichiometric binding ratio with the target ions (Cd2+ & Hg2+), with a visual color change from pale orange to dark red for Cd2+ (525 nm, λmax), and to purple for Hg2+ (530 nm, λmax), respectively, in the pH range 7.0-8.0. The influence of various analytical criteria such as pH, temperature, response kinetics, critical probe concentration, sensor quantity, matrix tolerance, linear response range, reusability, the limit of detection (LOD), and quantification (LOQ) has been investigated to validate the sensor performance. The proposed method displays a linear signal response in the concentration range 5-100 μg/L, with a LOD value of 2.67 and 2.90 μg/L, for Cd2+ and Hg2+, respectively. The real-world efficacy of the sensor material has been tested with real and synthetic water samples with a significant recovery value of ≥ 99.2%, to authenticate its data reliability and reproducibility (RSD ≤ 3.53%). Graphical abstract.
Keyphrases
- solid state
- living cells
- aqueous solution
- fluorescent probe
- quantum dots
- nk cells
- multiple sclerosis
- liquid chromatography
- magnetic resonance
- gold nanoparticles
- photodynamic therapy
- mass spectrometry
- machine learning
- nitric oxide
- sensitive detection
- loop mediated isothermal amplification
- hydrogen peroxide
- ms ms
- molecularly imprinted
- artificial intelligence
- transcription factor