Login / Signup

Selenium Distribution and Trophic Transfer in the Periphyton-Benthic Macroinvertebrate Food Chain in Boreal Lakes Downstream from a Milling Operation.

Maira MendesBeatriz Cupe-FloresKarsten Liber
Published in: Environmental toxicology and chemistry (2022)
Selenium (Se) is an essential micronutrient with a narrow essentiality-toxicity range known to bioaccumulate in aquatic food webs. Selenium uptake and trophic transfer at the base of aquatic food chains represent a great source of uncertainty for Se risk assessment. The goal of the present study was to investigate Se distribution in water and sediment and its subsequent transfer into the periphyton-benthic macroinvertebrate (BMI) food chain in boreal lakes downstream from a Saskatchewan uranium mill. In particular, the present study aimed to assess potential differences in Se bioaccumulation patterns by BMI taxa to contribute to the current knowledge gap. During summer 2018 and 2019, water, sediment, periphyton, and BMI were sampled at two sites in Vulture Lake, seven sites in McClean Lake east basin, and one reference site in McClean Lake west basin. Periphyton and BMI taxa were sampled with artificial substrates (Hester-Dendy) deployed for 5 weeks in 2018 and 7 weeks in 2019; BMI were sorted into the lowest practical achievable taxonomic level and analyzed for total Se concentrations. At the diluted effluent exposure sites, Se concentrations in BMI ranged from 1.3 to 18.0 µg/g dry weight and from 0.3 to 49.3 µg/g dry weight in 2018 and 2019, respectively, whereas concentrations ranged from 0.01 to 3.5 µg/g dry weight at the reference site. Selenium concentrations in periphyton and some BMI taxa sampled near the effluent diffuser (Se < 1 µg/L) reached levels comparable to higher effluent exposure sites (Se > 2 µg/L). Despite differences in Se bioaccumulation among BMI taxa, an approximately one-to-one trophic transfer ratio was observed for benthic primary consumers and benthic predatory taxa. Environ Toxicol Chem 2022;41:2181-2192. © 2022 SETAC.
Keyphrases
  • body mass index
  • weight gain
  • risk assessment
  • human health
  • heavy metals
  • physical activity
  • wastewater treatment
  • climate change
  • weight loss
  • water quality
  • healthcare