Login / Signup

Association between [Formula: see text]O2 kinetics and [Formula: see text]O2max in groups differing in fitness status.

Erin Calaine InglisDanilo IannettaJuan Manuel Murias
Published in: European journal of applied physiology (2021)
No significant correlation between τ̇[Formula: see text]O2 and [Formula: see text]O2max was found in trained participants (r = 0.29; p > 0.05) whereas a significant negative correlation was found in untrained (r = - 0.58; p < 0.05) and all participants (r = - 0.82; p < 0.05). τQ̇ (18.8 ± 5.5 s) and τHR (20.1 ± 6.2 s) were significantly greater than τ[Formula: see text]O2 (13.9 ± 2.7 s) for trained (p < 0.05). No differences were found between τQ̇ (22.8 ± 8.45 s), τHR (21.2 ± 8.3 s) and τ[Formula: see text]O2 (28.9 ± 5.7 s) for untrained (p > 0.05). τQ̇ demonstrated a significant strong positive correlation with τHR in trained (r = 0.76; p < 0.05) but not untrained (r = 0.61; p > 0.05). A significant overshoot in the [HHb]/[Formula: see text]O2 ratio was found in the untrained groups (p < 0.05) but not in the trained groups (p > 0.05) CONCLUSION: The results indicated that when comparing participants of different fitness status (i) there is a point at which greater V̇O2max values are not accompanied by faster [Formula: see text]O2 kinetics; (ii) central delivery of O2 does not seem to limit the kinetics of [Formula: see text]O2; and (iii) O2 delivery within the active tissues might contribute to the slower [Formula: see text]O2 kinetics response in untrained participants.
Keyphrases
  • resistance training
  • smoking cessation
  • human milk
  • body composition
  • physical activity
  • gene expression
  • high intensity