Login / Signup

Size Induced Structural Changes in Molybdenum Oxide Nanoparticles.

Troels Lindahl ChristiansenEspen Drath Bo JesenMikkel JuelsholtJoanne EtheridgeKirsten M Ø Jensen
Published in: ACS nano (2019)
Nanosizing of metal oxide particles is a common strategy for improving materials properties; however, small particles often take structures different from the bulk material. MoO2 nanoparticles show a structure that is distinct from the bulk distorted rutile structure and which has not yet been determined. Here, we present a model for nanostructured MoO2 obtained through detailed atomic pair distribution function analysis combined with high-resolution electron microscopy. Defects occur in the arrangement of [MoO6] octahedra, in both large (40-100 nm) nanoparticles, where the overall distorted rutile structure is preserved, and in small nanoparticles (<5 nm), where a new nanostructure is formed. The study provides a piece in the puzzle of understanding the structure/properties relationship of molybdenum oxides and further our understanding of the origin of structural changes taking place upon nanosizing in oxide materials.
Keyphrases
  • high resolution
  • electron microscopy
  • oxide nanoparticles
  • photodynamic therapy
  • oxidative stress
  • walled carbon nanotubes
  • drug induced