Login / Signup

Charge-Polarized Selenium Vacancy in Nickel Diselenide Enabling Efficient and Stable Electrocatalytic Conversion of Oxygen to Hydrogen Peroxide.

Yingming WangHui HuangJie WuHongyuan YangZhenhui KangYang LiuZhaowu WangPrashanth Wilfred MenezesZiliang Chen
Published in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2022)
Vacancy engineering is deemed as one of the powerful protocols to tune the catalytic activity of electrocatalysts. Herein, Se-vacancy with charge polarization is created in the NiSe 2 structure (NiSe 2 -V Se ) via a sequential phase conversion strategy. By a combined analysis of the Rietveld method, transient photovoltage spectra (TPV), in situ Raman and density functional theory (DFT) calculation, it is unequivocally discovered that the presence of charge-polarized Se-vacancy is beneficial for stabilizing the structure, decreasing the electron transfer kinetics, as well as optimizing the free adsorption energy of reaction intermediate during two-electron oxygen reduction reaction (2e - ORR). Benefiting from these merits, the as-prepared NiSe 2 -V Se delivered the highest selectivity of 96% toward H 2 O 2 in alkaline media, together with a selectivity higher than 90% over the wide potential range from 0.25 to 0.55 V, ranking it in the top level among the previously reported transition metal-based electrocatalysts. Most notably, it also displayed admirable stability with only a slight selectivity decay after 5000 cycles of accelerated degradation test (ADT).
Keyphrases