Login / Signup

Enhanced Mass Activity and Durability of Bimetallic Pt-Pd Nanoparticles on Sulfated-Zirconia-Doped Graphene Nanoplates for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell Applications.

Maryam YaldagardMichael Arkas
Published in: Molecules (Basel, Switzerland) (2024)
Developing highly active and durable Pt-based electrocatalysts is crucial for polymer electrolyte membrane fuel cells. This study focuses on the performance of oxygen reduction reaction (ORR) electrocatalysts composed of Pt-Pd alloy nanoparticles on graphene nanoplates (GNPs) anchored with sulfated zirconia nanoparticles. The results of field emission scanning electron microscopy and transmission electron microscopy showed that Pt-Pd and S-ZrO 2 are well dispersed on the surface of the GNPs. X-ray diffraction revealed that the S-ZrO 2 and Pt-Pd alloy coexist in the Pt-Pd/S-ZrO 2 -GNP nanocomposites without affecting the crystalline lattice of Pt and the graphitic structure of the GNPs. To evaluate the electrochemical activity and reaction kinetics for ORR, we performed cyclic voltammetry, rotating disc electrode, and EIS experiments in acidic solutions at room temperature. The findings showed that Pt-Pd/S-ZrO 2 -GNPs exhibited a better ORR performance than the Pt-Pd catalyst on the unsulfated ZrO 2 -GNP support and with Pt on S-ZrO 2 -GNPs and commercial Pt/C.
Keyphrases