Wear-Resistant Smart Textiles Using Nylon-11 Triboelectric Yarns.
Piotr K SzewczykTommaso BusoloSohini Kar-NarayanUrszula StachewiczPublished in: ACS applied materials & interfaces (2023)
The ever-increasing demand for self-powered systems such as glucose biosensors and mixed reality devices has sparked significant interest in triboelectric generators, which hold large potential as renewable energy solutions. Our study explores new methods for integrating energy-harvesting capabilities into smart textiles by developing strong and efficient yarns that can convert mechanical energy into electrical energy through a triboelectric effect. Specifically, we focused on Nylon-11 (PA11), a material known for its crystalline structure well-suited for generating a powerful triboelectric response. To achieve this, we created triboelectric yarns by electrospinning PA11 fibers onto conductive carbon yarns, enabling energy-harvesting applications. Extensive testing demonstrated that these yarns possess exceptional durability, surpassing real-life usage requirements while experiencing minimal degradation. Additionally, we developed a prototype haptic device by interweaving tribopositive PA11 and tribonegative poly(vinylidene fluoride) (PVDF) triboelectric yarns. Our research has successfully yielded durable and efficient yarns with strong energy-harvesting capabilities, opening up possibilities for integrating smart textiles into practical scenarios. These technologies are promising steps to achieve greener and more reliable self-powered systems.