Reconciliation of Differences in Apparent Diffusion Coefficients Measured for Self-Exchange Electron Transfer between Molecules Anchored to Mesoporous Titanium Dioxide Thin Films.
Joseph M CardonGregory KrueperRylan KautzDavid M FabianJacqueline AngsonoHsiang-Yun ChenShane ArdoPublished in: ACS applied materials & interfaces (2020)
Redox-active sites present at large concentrations as part of a solid support or dissolved as molecules in fluid solutions undergo reversible self-exchange electron-transfer reactions. These processes can be monitored using a variety of techniques. Chronoamperometry and cyclic voltammetry are common techniques used to interrogate this behavior for molecules bound to mesoporous thin films of wide-bandgap semiconductors and insulators. In order to use these techniques to obtain accurate values for apparent diffusion coefficients, which are proxies for rate constants for self-exchange electron transfer, it is imperative to take into consideration nonidealities in redox titrations, parasitic currents, and ohmic resistances. Using spectroelectrochemical measurements taken concurrently with measurements of chronoamperometry data, we show that the spectroscopic data is not confounded from effects of parasitic currents or electroinactive dyes. However, we show that the thickness of the thin film over the region that is optically probed by the measurements must be known. When each of these considerations is included in data analyses, calculated apparent diffusion coefficients are, within error, independent of the method used to obtain the data. These considerations help reconcile variations in apparent diffusion coefficients measured using different techniques that have been reported over the past several decades and allow correct analyses to be performed in the future, independent of the method used to obtain the data.