Login / Signup

Designing spontaneous behavioral switching via chaotic itinerancy.

Katsuma InoueKohei NakajimaYasuo Kuniyoshi
Published in: Science advances (2020)
Chaotic itinerancy is a frequently observed phenomenon in high-dimensional nonlinear dynamical systems and is characterized by itinerant transitions among multiple quasi-attractors. Several studies have pointed out that high-dimensional activity in animal brains can be observed to exhibit chaotic itinerancy, which is considered to play a critical role in the spontaneous behavior generation of animals. Thus, how to design desired chaotic itinerancy is a topic of great interest, particularly for neurorobotics researchers who wish to understand and implement autonomous behavioral controls. However, it is generally difficult to gain control over high-dimensional nonlinear dynamical systems. In this study, we propose a method for implementing chaotic itinerancy reproducibly in a high-dimensional chaotic neural network. We demonstrate that our method enables us to easily design both the trajectories of quasi-attractors and the transition rules among them simply by adjusting the limited number of system parameters and by using the intrinsic high-dimensional chaos.
Keyphrases
  • neural network
  • depressive symptoms