Login / Signup

Transition from light diffusion to localization in three-dimensional amorphous dielectric networks near the band edge.

Jakub HaberkoLuis S Froufe-PérezFrank Scheffold
Published in: Nature communications (2020)
Localization of light is the photon analog of electron localization in disordered lattices, for whose discovery Anderson received the Nobel prize in 1977. The question about its existence in open three-dimensional materials has eluded an experimental and full theoretical verification for decades. Here we study numerically electromagnetic vector wave transmittance through realistic digital representations of hyperuniform dielectric networks, a new class of highly correlated but disordered photonic band gap materials. We identify the evanescent decay of the transmitted power in the gap and diffusive transport far from the gap. Near the gap, we find that transport sets off diffusive but, with increasing slab thickness, crosses over gradually to a faster decay, signaling localization. We show that we can describe the transition to localization at the mobility edge using the self-consistent theory of localization based on the concept of a position-dependent diffusion coefficient.
Keyphrases
  • magnetic resonance imaging
  • minimally invasive
  • computed tomography
  • working memory
  • magnetic resonance
  • high frequency
  • diffusion weighted imaging