Login / Signup

When cats need to see to step accurately?

Maxim VolgushevCelina T NguyenGautam S IyerIrina N Beloozerova
Published in: The Journal of physiology (2021)
Locomotion on complex terrains often requires vision. However, how vision serves locomotion is not well understood. Here, we asked when visual information necessary for accurate stepping is collected and how its acquisition relates to the step cycle. In cats of both sexes, we showed that a brief (200-400 ms) interruption of visual input can rapidly influence cat's walking along a horizontal ladder. Depending on the phase within the step cycle, a 200 ms period of darkness could be tolerated fully without any changes to the strides or could lead to minor increases of stride duration. The effects of 300-400 ms of visual input denial, which typically prolonged stances and/or swings, also depended on the phase of the darkness onset. The increase of the duration of strides was always shorter than the duration of darkness. We conclude that visual information for planning a swing is collected starting from the middle of the preceding stance until the beginning of the current swing. For a stance (and/or a swing of the other paw), visual information is collected starting from the end of the previous stance and until the middle of the current stance. Acquisition of visual information during these windows is not uniform but depends on the phase of the step cycle. Notably, both the extension of these windows and their non-homogeneity are closely related to the pattern of gaze behaviour in cats, described previously. This new knowledge will help to guide research and understanding of neuronal mechanisms of visuomotor integration and modulation of visual function by strides during locomotion. KEY POINTS: Cats, like humans, rely on vision to navigate in complex environments. In cats walking along a horizontally placed ladder, we show that visual information required for accurate stepping is collected in a non-uniform manner throughout the stride cycle. Brief denial of visual input during a swing prolongs the next stance of that forelimb. Denial of visual input during a stance prolongs this stance, as well as the next swing and stance. Denial during the first half of a stance has a greater effect than during the second half. The phase dependence of the use of vision for accurate stepping and the pattern of affected swings and stances are closely related to the previously described pattern of gaze behaviour in cats. This new knowledge opens new perspectives for research into neuronal mechanisms of visuomotor coordination and visual function during walking and for understanding related disorders.
Keyphrases
  • multiple sclerosis
  • healthcare
  • high resolution
  • ms ms
  • brain injury
  • social media