A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-Range Human-Machine Interfacing.
Ying GuoMengjuan ZhongZhiwei FangPengbo WanGuihua YuPublished in: Nano letters (2019)
Flexible and degradable pressure sensors have received tremendous attention for potential use in transient electronic skins, flexible displays, and intelligent robotics due to their portability, real-time sensing performance, flexibility, and decreased electronic waste and environmental impact. However, it remains a critical challenge to simultaneously achieve a high sensitivity, broad sensing range (up to 30 kPa), fast response, long-term durability, and robust environmental degradability to achieve full-scale biomonitoring and decreased electronic waste. MXenes, which are two-dimensional layered structures with a large specific surface area and high conductivity, are widely employed in electrochemical energy devices. Here, we present a highly sensitive, flexible, and degradable pressure sensor fabricated by sandwiching porous MXene-impregnated tissue paper between a biodegradable polylactic acid (PLA) thin sheet and an interdigitated electrode-coated PLA thin sheet. The flexible pressure sensor exhibits high sensitivity with a low detection limit (10.2 Pa), broad range (up to 30 kPa), fast response (11 ms), low power consumption (10-8 W), great reproducibility over 10 000 cycles, and excellent degradability. It can also be used to predict the potential health status of patients and act as an electronic skin (E-skin) for mapping tactile stimuli, suggesting potential in personal healthcare monitoring, clinical diagnosis, and next-generation artificial skins.
Keyphrases
- human health
- healthcare
- life cycle
- solid state
- heavy metals
- end stage renal disease
- endothelial cells
- ejection fraction
- multiple sclerosis
- drug delivery
- newly diagnosed
- gold nanoparticles
- soft tissue
- mass spectrometry
- wound healing
- deep learning
- cerebral ischemia
- reduced graphene oxide
- prognostic factors
- sewage sludge
- heart rate
- working memory
- climate change
- blood pressure
- patient reported outcomes
- health insurance
- induced pluripotent stem cells
- machine learning
- fluorescent probe
- loop mediated isothermal amplification
- anaerobic digestion
- transition metal
- subarachnoid hemorrhage