Login / Signup

In vitro study of the antioxidant, antiproliferative, and anthelmintic properties of some medicinal plants of Kokrajhar district, India.

Ananta SwargiaryMritunjoy Kumar RoyAkalesh Kumar Verma
Published in: Journal of parasitic diseases : official organ of the Indian Society for Parasitology (2021)
Alstonia scholaris, Cardiospermum halicacabum, Hydrocotyle sibthorpioides, and Hypericum japonicum are important folk medicinal plants used by tribal communities of Bodoland region of Assam to treat helminth infections. Because of their ethnomedicinal values, the present study was designed to investigate the antioxidant, antiproliferative, and anthelmintic activities of the plants. The antioxidant activity was measured by total antioxidant capacity, total phenolics (TPC), total flavonoid (TFC), FRAP, DPPH, ABTS, and TBARS assay. Antiproliferative and apoptosis-inducing activities of plants were conducted in Dalton's lymphoma (DL) cells. Cells were treated for 24 h with different doses (25-200 mg/mL) of plant extracts. Anthelmintic study was conducted by treating the Paramphistomum sp. at different doses of plant extracts. Phytochemical and antioxidant studies showed rich TPC, TFC, and free radical scavenging activity in H. japonicum and H. sibthorpioides. Both the antiproliferative and anthelmintic bioassays showed a dose-dependent efficacy in all plants. H. japonicum showed the strongest anthelmintic activity (LC50 0.21 mg/mL) followed by H. sibthorpioides (5.36 mg/mL), C. halicacabum (13.40 mg/mL), and A. scholaris (18.40 mg/mL). Evidently, H. sibthorpioides showed the strongest antiproliferative and apoptosis-inducing activities among all the plants. The study observed a positive correlation between the antioxidant properties and antiproliferative and anthelmintic activities of the plants. We, therefore, conclude that the phytocompounds present in the crude extracts along with antioxidant molecules may have combined effects contributing to the antiproliferative and anthelmintic activities of the plants.
Keyphrases
  • oxidative stress
  • cell cycle arrest
  • induced apoptosis
  • anti inflammatory
  • endoplasmic reticulum stress
  • cell death
  • south africa
  • high throughput
  • single cell