Integrated bulk and single-cell transcriptomes reveal pyroptotic signature in prognosis and therapeutic options of hepatocellular carcinoma by combining deep learning.
Yang LiuHanlin LiTianyu ZengYang WangHongqi ZhangYing WanZheng ShiRenzhi CaoHua TangPublished in: Briefings in bioinformatics (2024)
Although some pyroptosis-related (PR) prognostic models for cancers have been reported, pyroptosis-based features have not been fully discovered at the single-cell level in hepatocellular carcinoma (HCC). In this study, by deeply integrating single-cell and bulk transcriptome data, we systematically investigated significance of the shared pyroptotic signature at both single-cell and bulk levels in HCC prognosis. Based on the pyroptotic signature, a robust PR risk system was constructed to quantify the prognostic risk of individual patient. To further verify capacity of the pyroptotic signature on predicting patients' prognosis, an attention mechanism-based deep neural network classification model was constructed. The mechanisms of prognostic difference in the patients with distinct PR risk were dissected on tumor stemness, cancer pathways, transcriptional regulation, immune infiltration and cell communications. A nomogram model combining PR risk with clinicopathologic data was constructed to evaluate the prognosis of individual patients in clinic. The PR risk could also evaluate therapeutic response to neoadjuvant therapies in HCC patients. In conclusion, the constructed PR risk system enables a comprehensive assessment of tumor microenvironment characteristics, accurate prognosis prediction and rational therapeutic options in HCC.
Keyphrases
- single cell
- end stage renal disease
- rna seq
- newly diagnosed
- deep learning
- ejection fraction
- chronic kidney disease
- high throughput
- peritoneal dialysis
- machine learning
- wastewater treatment
- stem cells
- prognostic factors
- gene expression
- big data
- primary care
- patient reported outcomes
- radiation therapy
- artificial intelligence
- bone marrow
- high resolution
- lymph node metastasis
- signaling pathway
- genome wide
- case report
- data analysis
- young adults
- single molecule
- clinical evaluation