Login / Signup

Mst1-mediated phosphorylation of FoxO1 and C/EBP-β stimulates cell-protective mechanisms in cardiomyocytes.

Yasuhiro MaejimaJihoon NahZahra AryanPeiyong ZhaiEun Ah SungTong LiuKoichiro TakayamaSiavash MoghadamiTetsuo SasanoHong LiJunichi Sadoshima
Published in: Nature communications (2024)
The molecular mechanisms by which FoxO transcription factors mediate diametrically opposite cellular responses, namely death and survival, remain unknown. Here we show that Mst1 phosphorylates FoxO1 Ser209/Ser215/Ser218/Thr228/Ser232/Ser243, thereby inhibiting FoxO1-mediated transcription of proapoptotic genes. On the other hand, Mst1 increases FoxO1-C/EBP-β interaction and activates C/EBP-β by phosphorylating it at Thr299, thereby promoting transcription of prosurvival genes. Myocardial ischemia/reperfusion injury is larger in cardiac-specific FoxO1 knockout mice than in control mice. However, the concurrent presence of a C/EBP-β T299E phospho-mimetic mutation reduces infarct size in cardiac-specific FoxO1 knockout mice. The C/EBP-β phospho-mimetic mutant exhibits greater binding to the promoter of prosurvival genes than wild type C/EBP-β. In conclusion, phosphorylation of FoxO1 by Mst1 inhibits binding of FoxO1 to pro-apoptotic gene promoters but enhances its binding to C/EBP-β, phosphorylation of C/EBP-β, and transcription of prosurvival genes, which stimulate protective mechanisms in the heart.
Keyphrases