Login / Signup

Exploiting Charge-Transfer States for Maximizing Intersystem Crossing Yields in Organic Photoredox Catalysts.

Steven M SartorBlaine G McCarthyRyan M PearsonGarret M MiyakeNiels H Damrauer
Published in: Journal of the American Chemical Society (2018)
A key feature of prominent transition-metal-containing photoredox catalysts (PCs) is high quantum yield access to long-lived excited states characterized by a change in spin multiplicity. For organic PCs, challenges emerge for promoting excited-state intersystem crossing (ISC), particularly when potent excited-state reductants are desired. Herein, we report a design exploiting orthogonal π-systems and an intermediate-energy charge-transfer excited state to maximize ISC yields (ΦISC) in a highly reducing ( E0* = -1.7 V vs SCE), visible-light-absorbing phenoxazine-based PC. Simple substitution of N-phenyl for N-naphthyl is shown to dramatically increase ΦISC from 0.11 to 0.91 without altering catalytically important properties, such as E0*.
Keyphrases
  • transition metal
  • visible light
  • machine learning
  • water soluble
  • energy transfer
  • deep learning