Automated silylation of flavonoids using 3D printed microfluidics prior to chromatographic analysis: system development.
Thabang Bernette NcongwaneDerek Tantoh NdintehElize SmitPublished in: Analytical and bioanalytical chemistry (2023)
Flavonoids are a class of secondary plant metabolites with low molecular weights. Most flavonoids are highly polar and unsuitable for gas chromatographic analyses. Derivatization is commonly used to make them amenable to gas chromatography by altering their physicochemical properties. Although highly effective, derivatization techniques introduce extra preparation steps and often use hazardous chemicals. The aim of this study was to automate derivatization (specifically, silylation) by developing 3D printed microfluidic devices in which derivatization of flavonoids can occur. A microfluidic device was designed and 3D printed using clear polypropylene. Quercetin and other flavonoids (TED 13 and ZTF 1016) isolated from plant extracts were silylated with N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) at room temperature both in batch and in continuous flow. All the samples were analyzed using Fourier transform infrared (FTIR) spectroscopy, gas chromatography combined with mass spectrometry (GC-MS), and high-resolution accurate mass spectrometry (HR-MS). Interestingly, the HR-MS results showed that the flow method was about 25 times more efficient than the batch method for quercetin samples. The TED 13 flavonoid was completely derivatized in the flow method compared to the batch method where the reaction was incomplete. Similar results were observed for ZTF 1016, where the flow method resulted in a four times derivatized compound, while the compound was only derivatized once in batch. In conclusion, 3D printed microfluidic devices have been developed and used to demonstrate a semi-automated, inexpensive, and more efficient natural product derivatization method based on continuous flow chemistry as an alternative to the traditional batch method.
Keyphrases
- gas chromatography
- mass spectrometry
- liquid chromatography
- tandem mass spectrometry
- high performance liquid chromatography
- high resolution
- ms ms
- gas chromatography mass spectrometry
- high resolution mass spectrometry
- simultaneous determination
- ultra high performance liquid chromatography
- room temperature
- solid phase extraction
- high throughput
- liquid chromatography tandem mass spectrometry
- capillary electrophoresis
- circulating tumor cells
- single cell
- ionic liquid
- multiple sclerosis
- deep learning
- single molecule