Login / Signup

Flexible Enzymatic Glucose Electrochemical Sensor Based on Polystyrene-Gold Electrodes.

Annika MüsseFrancesco La MalfaVirgilio BrunettiFrancesco RizziMassimo De Vittorio
Published in: Micromachines (2021)
Metabolic disorders such as the highly prevalent disease diabetes require constant monitoring. The health status of patients is linked to glucose levels in blood, which are typically measured invasively, but can also be correlated to other body fluids such as sweat. Aiming at a reliable glucose biosensor, an enzymatic sensing layer was fabricated on flexible polystyrene foil, for which a versatile nanoimprinting process for microfluidics was presented. For the sensing layer, a gold electrode was modified with a cysteine layer and glutaraldehyde cross-linker for enzyme conformal immobilization. Chronoamperometric measurements were conducted in PBS buffered glucose solution at two potentials (0.65 V and 0.7 V) and demonstrated a linear range between 0.025 mM to 2mM and an operational range of 0.025 mM to 25 mM. The sensitivity was calculated as 1.76µA/mM/cm2 and the limit of detection (LOD) was calculated as 0.055 mM at 0.7 V. An apparent Michaelis-Menten constant of 3.34 mM (0.7 V) and 0.445 mM (0.65 V) was computed. The wide operational range allows the application for point-of-care testing for a variety of body fluids. Yet, the linear range and low LOD make this biosensor especially suitable for non-invasive sweat sensing wearables.
Keyphrases