Ascorbic Acid-Assisted Microwave Synthesis of Mesoporous Ag-Doped Hydroxyapatite Nanorods from Biowaste Seashells for Implant Applications.
Gopalu KarunakaranEun-Bum ChoGovindan Suresh KumarEvgeny KolesnikovGopinathan JanarthananMamatha Muraleedharan PillaiSelvakumar RajendranSelvakumar BoobalanMikhail Vladimirovich GorshenkovDenis KuznetsovPublished in: ACS applied bio materials (2019)
Post-surgery implant infection is one of the most challenging issues in orthopedics and it is mainly caused by infective micro-organisms. A potential approach to overcome this issue is developing biomaterials with efficient antibacterial activity. The main intention of this present research is devoted to ascorbic acid-assisted microwave synthesis of mesoporous (silver) Ag-doped hydroxyapatite (HAp) nanorods using biowaste seashells with antibacterial properties. XRD, FTIR, and Raman spectroscopy results revealed that the synthesized nanoparticles are hexagonal crystalline HAp. Further, the silver-doped HAp was also successfully produced without affecting the HAp crystalline phase by forming electrostatic interaction with PO 4 3- ions during the synthesis. The morphological features confirm that the pure HAp is elongated mesoporous nanorods with 20 nm width and 300-500 nm length. However, silver doped HAp nanoparticles such as AgHA-1, AgHA-2, and AgHA-3 are found to be similar mesoporous rods but with different aspect ratios in sizes of 15, 10-15, and 5-10 nm width and 80-100, 10-15, and 20-30 nm length. The BET specific surface areas were obtained as 29 ± 3, 84 ± 2, 87 ± 2, and 128 ± 3 m 2 g -1 , and pore diameters were 4.68, 4.18, 9.30, and 3.77 nm, respectively, for pure HA, AgHA-1, AgHA-2, and AgHA-3. Therefore, HAp nanoparticles with different dimensions and mesoporous structures could be rapidly prepared using a microwave-assisted method and ascorbic acid as a supporting material. In addition, the synthesized HAp nanoparticles are analyzed for its antibacterial and cytotoxicity studies. The antibacterial and cytotoxicity study clearly reveals that the Ag-doped HAp nanorods are efficiently antibacterial and nontoxic in nature. Hence, it is clear that the ascorbic acid-enabled microwave-assisted method will be one of the best methods for the rapid production of HAp nanoparticles with different dimensions and mesoporous structures for its application as an implant material.
Keyphrases
- quantum dots
- highly efficient
- metal organic framework
- silver nanoparticles
- visible light
- raman spectroscopy
- sensitive detection
- minimally invasive
- high resolution
- anti inflammatory
- room temperature
- reduced graphene oxide
- single cell
- climate change
- coronary artery disease
- walled carbon nanotubes
- atrial fibrillation
- percutaneous coronary intervention
- light emitting
- bone regeneration
- essential oil
- oxide nanoparticles
- case control