Login / Signup

Effects of Conjugated Structure on the Magnesium Storage Performance of Dianhydrides.

Hongkai YangFei Xu
Published in: Chemphyschem : a European journal of chemical physics and physical chemistry (2021)
Inorganic cathodes of rechargeable Mg batteries suffer from limited selections, while organic materials provide more options. Herein, three conjugated dianhydrides, pyromellitic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride and 3,4,9,10-perylenetetracarboxylic dianhydride are comparatively investigated to elucidate the effects of conjugated structure on the Mg2+ storage performances. It is observed that the reversible Mg2+ storage capacity is more dependent on the conjugated structure than carbonyl numbers. Ex-situ mechanism study illustrates that the extended conjugated structure delocalizes the electron density, hence enhancing carbonyl enolization and increasing the Mg2+ storage capacity. Furthermore, the largely conjugated structure buffers the charge density change during repeated magnesiation/demagnesiation resulting in better cyclability. Prominently, 3,4,9,10-perylenetetracarboxylic dianhydride shows a high Mg2+ storage capacity (160 mAh g-1 ) and a good cycling stability (80 % capacity retention after 100 cycles) with the largest conjugated structure. This work provides a low-cost cathode for rechargeable Mg batteries that can be utilized for designing high-performance organic Mg battery cathodes.
Keyphrases
  • photodynamic therapy
  • low cost
  • water soluble
  • mass spectrometry
  • high resolution
  • solar cells
  • high speed