Login / Signup

Flow-mediated slowing shows poor repeatability compared with flow-mediated dilation in non-invasive assessment of brachial artery endothelial function.

João Luís MarôcoMarco PintoHelena Santa-ClaraBo FernhallXavier Melo
Published in: PloS one (2022)
Pulse wave velocity (PWV) deceleration to reactive hyperemia-flow-mediated slowing (FMS)-has been suggested as an alternative method to flow-mediated dilation (FMD) to evaluate brachial artery endothelial function. FMS is suggested to address major caveats of the FMD procedure including its suboptimal repeatability and high-operator dependency. However, the repeatability of FMS has not been thoroughly examined, especially given the plethora of methods claiming to measure PWV. We assessed and compared the intra- and inter-day repeatability of FMS as measured by piezoelectric pressure mechanotransducers placed in the carotid and radial arteries, and brachial artery FMD as measured by echo-tracking. Twenty-four healthy male participants aged 23-75 yr, were examined on three separate days to assess intra and inter-day repeatability. All FMD and FMS examinations were conducted simultaneously by the same researcher complying with standardized guidelines. Repeatability was examined with intraclass correlation coefficient (ICC; >0.80), coefficient of variation (CV; <15%), and limits of agreement (95% LOA). Relative (%) FMD and FMS were scaled for baseline brachial artery diameter and PWV, respectively. Intra- (ICC: 0.72; CV: 136%; 95% LOA: -19.38 to 29.19%) and Inter-day (ICC: 0.69; CV: 145%, 95% LOA: -49.50 to 46.08%) repeatability of %FMS was poor, whereas %FMD demonstrated moderate-to-good intra- (ICC: 0.93; CV: 18%, 95% LOA: -3.02 to 3.75%) and inter-day repeatability (ICC: 0.74; CV: 25%, 95% LOA: -9.16 to 7.04%). Scaling FMD reduced the intra-day CV (-5%), and the uncertainty of the 95% LOA (- 37.64 to 35.69%) estimates of FMS. Carotid-radial artery FMS showed poorer repeatability compared to FMD.
Keyphrases
  • tyrosine kinase
  • minimally invasive
  • high intensity