Login / Signup

Buffered Oxide Etchant Post-Treatment of a Silicon Nanofilm for Low-Cost and Performance-Enhanced Chemical Sensors.

Min GaoZhi-Jun ZhaoHyeonggyun KimMingliang JinPanpan LiTaehwan KimKyungnam KangIncheol ChoJun-Ho JeongInkyu Park
Published in: ACS applied materials & interfaces (2020)
The high surface-to-volume ratio of nanostructured materials is the key factor for excellent performance when applied to chemical sensors. In order to achieve this by a facile and low-cost fabrication strategy, buffered oxide etchant (BOE) treatment of a silicon (Si)-based sensor was proposed. An n+-n--n+ Si nanofilm structure was treated with a BOE, and palladium nanoparticles (PdNPs) were coated on the n-type Si channel surface via short-time electron beam evaporation to enable a highly sensitive and selective sensing of hydrogen (H2) gas. The BOE treatment effect on lightly doped n-type Si was investigated, and the surface morphology of the etched Si was analyzed. Furthermore, the H2 sensing characterization of PdNP-decorated Si devices with various BOE treatment times was systematically evaluated at room temperature. The results revealed that the surface of n-type Si is roughened by BOE treatment, which can further enhance the H2-sensing performance of Pd-decorated Si. The elaborate study on the BOE-post-treated Si H2 sensor showed that the performance enhancement was stable. The BOE treatment strategy was also applied to the nanopatterned Si sensors, which induced a clear performance enhancement for the H2 sensing.
Keyphrases
  • room temperature
  • low cost
  • highly efficient
  • combination therapy
  • ionic liquid
  • mass spectrometry
  • simultaneous determination