Dual Anti-/Prooxidant Behaviors of Flavonoids Pertaining to Cu(II)-Catalyzed Tyrosine Nitration of the Insulin Receptor Kinase Domain in an Antidiabetic Study.
Xu FangWanxia GaoZhen YangZhonghong GaoHailing LiPublished in: Journal of agricultural and food chemistry (2020)
Flavonoid, as a potent antioxidant, exerts many beneficial effects in type 2 diabetes, whereas the prooxidative property may be also important in vivo if copper is involved. Here, we chose an insulin receptor kinase domain fragment (KK-1, residues 1126-1165), containing the A-loop of the receptor as well as three key autophosphorylation sites (Tyr1158, Tyr1162, and Tyr1163) associated with receptor signal transduction to investigate the roles and the structure-activity relationship of three antidiabetic flavonoids (kaempferol, luteolin, and apigenin) and two others with a similar structure (diosmetin and genistein), on modulation of Cu(II)-mediated tyrosine nitration and the corresponding effect on its functional phosphorylation in the Cu2+/H2O2/NO2- system. We found that both properties of flavonoid played roles on inhibition of Cu(II)-mediated protein nitration in the H2O2/NO2- system: (1) on the one hand, flavonoid scavenged free radicals as antioxidants, inhibited tyrosine nitration, and thus inhibited the reduction of tyrosine phosphorylation caused by tyrosine nitration; and (2) on the other hand, flavonoid promoted •OH production as a prooxidant, which increased 3,3'-dityrosine formation. The formation of 3,3'-dityrosine decreased Cu2+-induced tyrosine nitration and thus interfered with its phosphorylation. This study confirms that the weight relationship between antioxidation and prooxidation of a flavonoid needs to be studied clearly before nutritional and medical applications.